Monday, August 28, 2017

Interfacing PIC16F877A with LM35 temperature sensor


The LM35 temperature sensor is three pin device (VCC, OUT and GND) with an output voltage linearly related to Centigrade temperature. Since the LM35 output varies with dependent to the temperature we need ADC (Analog-to-Digital Converter) module to measure this voltage. The ADC module converts analog data into digital data.
The LM35 output has linear +10mV/°C scale factor means the following:
If the output voltage =   10mV ---> temperature =   1°C
If the output voltage = 100mV ---> temperature = 10°C
If the output voltage = 200mV ---> temperature = 20°C
If the output voltage = 370mV ---> temperature = 37°C
and so on.
LM35 Futures (from datasheet):
  • Calibrated Directly in ° Celsius (Centigrade)
  • Linear + 10 mV/°C Scale Factor
  • 0.5°C Ensured Accuracy (at +25°C)
  • Rated for Full −55°C to +150°C Range
  • Suitable for Remote Applications
  • Low Cost Due to Wafer-Level Trimming
  • Operates from 4 to 30 V
  • Less than 60-μA Current Drain
  • Low Self-Heating, 0.08°C in Still Air
  • Nonlinearity Only ±¼°C Typical
  • Low Impedance Output, 0.1 Ω for 1 mA Load
This topic shows how to interface the microcontroller PIC16F877A with LM35 analog temperature sensor.
Hardware Required:
  • PIC16F877A microcontroller
  • LM35 temperature sensor  -- datasheet
  • 1602 LCD screen
  • 8MHz crystal
  • 2 x 22pF ceramic capacitor
  • 10K ohm variable resistor
  • Breadboard
  • 5V voltage source
  • Jumper wires
Interfacing PIC16F877A with LM35 sensor circuit:
PIC16F877A with LM35 temperature sensor circuit
The output of the LM35 temperature sensor is connected to analog channel 0 (AN0) of the PIC16F877A.
In this example the microcontroller runs with crystal oscillator @ 8MHz.
Interfacing PIC16F877A with LM35 temperature sensor C code:
The C code below was tested with CCS PIC C compiler version 5.051.
Reading voltage quantity using the ADC gives us a number between 0 and 1023 (10-bit resolution), 0V is represented by 0 and 5V is represented by 1023. Converting back the ADC digital value is easy and we can use the following equation for that conversion:
Voltage (in Volts) = ADC reading * 5 / 1023
Multiplying the previous result by 100 (LM35 scale factor is 10mV/°C = 0.01V/°C) will gives the actual temperature:
Temperature(°C) = ADC reading * 0.489
where 0.489 = 500 / 1023
/* Interfacing PIC16F877A with LM35 analog temperature sensor CCS C code.
   Read LM35 datasheet to understand the code!
   http://ccspicc.blogspot.com/
   electronnote@gmail.com
*/

//LCD module connections
#define LCD_RS_PIN      PIN_D0
#define LCD_RW_PIN      PIN_D1
#define LCD_ENABLE_PIN  PIN_D2
#define LCD_DATA4       PIN_D3
#define LCD_DATA5       PIN_D4
#define LCD_DATA6       PIN_D5
#define LCD_DATA7       PIN_D6
//End LCD module connections

#include <16F877A.h>
#fuses HS,NOWDT,NOPROTECT,NOLVP
#device ADC=10
#use delay(clock = 8MHz)
#include <lcd.c>

char temperature[] = " 00.0 C";
unsigned int16 temp;
void main(){
  setup_adc(ADC_CLOCK_INTERNAL);                 // ADC Module uses its internal oscillator
  setup_adc_ports(AN0);                          // Configure AN0 pin as analog
  set_adc_channel(0);                            // Select channel 0 (AN0)
  lcd_init();                                    // Initialize LCD module
  lcd_putc('\f');                                // Clear LCD
  lcd_gotoxy(3, 1);                              // Go to column 3 row 1
  printf(lcd_putc, "Temperature:");
  while(TRUE){
    delay_ms(1000);
    temp = read_adc() * 0.489;                   // Read analog voltage and convert it to degree celsius (0.489 = 500/1023)
    if (temp > 99)
      temperature[0]  = 1 + 48;                  // Put 1 (of hundred)
    else
      temperature[0]  = ' ';                     // Put space
    temperature[1]  = (temp / 10) % 10  + 48;
    temperature[2]  =  temp % 10  + 48;
    temperature[5] = 223;                        // Degree symbol
    lcd_gotoxy(5, 2);                            // Go to column 5 row 2
    printf(lcd_putc, temperature);               // Display LM35 temperature result
  }
}
Interfacing PIC16F877A with LM35 videos:
The video below shows a simple hardware circuit of our example.


And the following video shows the simulation.


PIC16F877A + LM35 Proteus simulation file download